上海2016年5月13日電 /美通社/ -- 隨著高效電池功率的提升,組件熱斑溫度越來越高;但各組件廠在解決高效組件熱斑影響上還沒有切實可行的解決方案。為此,TUV 南德意志集團(以下簡稱“TUV SUD”)聯(lián)合光伏行業(yè)專家黃子健先生與王囯峰先生對剛剛推出的無熱斑組件進行了測試,并和傳統(tǒng)組件熱斑溫度進行了技術(shù)解讀。TUV SUD大中華區(qū)光伏產(chǎn)品部總監(jiān)許海亮先生特別指出,“隨著電池效率的不斷提升,組件的輸出功率越來越高,對組件熱斑保護也越來越受到關(guān)注。而組件安裝后很多情況下熱斑是不可控的,因此對于組件熱斑的保護就格外重要。無熱斑組件無論從理論還是實際,都證實了其優(yōu)異的熱斑保護效果?!?/p>
概述:
傳統(tǒng)組件根據(jù) IEC 61215測量熱斑時,高效單晶72片電池組件電池片遮擋處的絕對溫度已經(jīng)超過150°C。而硅基半導(dǎo)體的PN結(jié)Tj標(biāo)定值也只有150°C。很明顯,隨著電池片效率的提升,組件熱斑溫度還將進一步升高,傳統(tǒng)組件的設(shè)計已經(jīng)不能滿足組件長期安全可靠工作的要求了。
針對光伏組件中的“熱斑”這一頑疾,通過新的電路設(shè)計,開發(fā)出無熱斑組件。無熱斑組件不僅徹底解決了組件發(fā)生熱斑時電池片的高溫問題,而且當(dāng)電池串內(nèi)電流失配時,無熱斑組件的輸出功率也比傳統(tǒng)組件高,提高了光伏系統(tǒng)的經(jīng)濟收益。
在同一實驗環(huán)境下,選一件傳統(tǒng)60片多晶組件和一件60片單晶無熱斑組件測試發(fā)生熱斑時對應(yīng)電池片和旁路保護二極管的溫度。實驗結(jié)果證實,無熱斑組件中熱斑電池片溫度基本沒有變化,和該組件中其它正常工作電池片沒有明顯溫差;而傳統(tǒng)組件中熱斑電池片溫度比組件中其它正常工作電池片溫度高出30°C,而且該電池片的絕對溫度也達到了120°C以上。無熱斑組件發(fā)生熱斑時的低溫特性使高效電池片的長期安全應(yīng)用得到技術(shù)上的保障。
為了保障光伏組件長期安全可靠正常的發(fā)電能力,建議組件熱斑溫度判定標(biāo)準限定在150°C以下,并且,熱斑絕對溫度越低,可以判定組件的長期可靠性能越好。
測試:
(1) 選用60片單晶無熱斑光伏組件(267.268Wp, Imp=8.569A)。
(2) 選用傳統(tǒng)60片多晶光伏組件 (262.440Wp, Imp=8.496A) 。
(3) 選用Honel穩(wěn)態(tài)測試儀,箱內(nèi)溫度設(shè)定為28°C,實際溫度27.5°C。
(4) 溫度測量是通過貼在組件背板相對應(yīng)位置的熱電偶獲得的。
(5) 由于測試箱條件的限制,組件溫度保持在80°C而不是IEC標(biāo)準的50°C。
(6) 遮擋面積的確定
a) 電池片沒有遮擋時,對應(yīng)面積為0%;
b) 按IEC 61215 第三版確定Imp時遮擋面積;
無熱斑組件Imp 的遮擋面積為6.18%;
傳統(tǒng)組件Imp時遮擋面積為 10.67%,比無熱斑組件的遮擋面積要大;
c) 選不同電池遮擋面積,測量熱斑電池片和二極管的溫度;
d) 全遮擋電池片100%;
(7) 熱斑電池片和溫度測試點的確定
通過紅外測溫,選定組件中最差電池片。二塊組件最差電池片都在同一位置。
無熱斑組件和傳統(tǒng)組件測試點唯一不同就是二極管測試點。無熱斑組件二極管封裝在組件背面背板電池片附近,而傳統(tǒng)組件二極管在接線盒中,要挖開硅膠,將熱電偶貼在 R6封裝的二極管上,但測試時,沒有再重新灌膠。所測溫度都是二極管的 Tc,而不是 Tj。但由于二種封裝不一樣,無熱斑組件中二極管是通過EVA+背板,傳統(tǒng)接線盒中二極管 R6 封裝是通過環(huán)氧樹脂表面測得 Tc。
溫度測試數(shù)據(jù):
無熱斑組件不同遮擋面積時,各測試點溫度
電池片 |
組件中心 |
電池片遮擋位置 |
電池片和 |
二極管溫度 Tc |
封裝在組件中二極管 |
0% |
82.9 |
78.41 |
-4.49 |
80.1 |
-2.8 |
6.16% |
81.5 |
77.8 |
-3.7 |
80.7 |
-0.8 |
10.28% |
84.6 |
79.8 |
-4.8 |
83.8 |
-0.8 |
100% |
84.2 |
78.6 |
-5.6 |
95.8 |
11.6 |
注:I-V曲線對應(yīng)Imp的遮擋面積為6.16%
傳統(tǒng)組件不同遮擋面積時,各測試點溫度
電池片 |
組件中心 |
電池片遮擋位置 |
電池片和 |
二極管溫度 Tc |
接線盒內(nèi)二極管 |
0% |
92.3 |
80.7 |
-11.6 |
73.5 |
-18.8 |
4.89% |
92.3 |
112.0 |
19.7 |
74.1 |
-18.2 |
11.45% |
92.0 |
124.6 |
32.6 |
75.9 |
-16.1 |
18.53% |
93.7 |
123.5 |
29.8 |
77.7 |
-16.0 |
28.39% |
94.3 |
117.0 |
22.7 |
80.41 |
-13.9 |
50.0% |
94.3 |
106.5 |
12.2 |
85.8 |
-8.5 |
100% |
90.5 |
80.2 |
-10.3 |
93.8 |
3.3 |
注:I-V曲線對應(yīng)Imp的遮擋面積為11.45%
實驗數(shù)據(jù)分析:
1. 由于測試熱斑的電池片位于緊靠邊框的位置,相比組件中心電池片散熱條件好,導(dǎo)致兩種組件在沒有任何遮擋正常工作時,測試電池片的溫度都比組件中心電池片溫度低(無熱斑組件82.9°C /78.41°C;傳統(tǒng)組件92.3°C /80.7°C)。
2. 無熱斑組件從0%遮擋到100%遮擋,熱斑電池片的溫度始終在組件參考基準溫度值附近,該電池片溫度變化范圍在78.4°C .4斑電池°C。由此推斷,無熱斑組件發(fā)生遮擋時,熱斑電池片的溫度主要受組件工作溫度的影響;而傳統(tǒng)組件熱斑電池片溫度已經(jīng)遠遠超過了組件參考基準溫度(92°C /124.6°C)。從以上可以看出,組件熱斑電池片的高溫是由電池串設(shè)計和電池片本身發(fā)熱造成,在相同組件工作溫度下,傳統(tǒng)組件電池片熱斑較高溫度會遠大于無熱斑組件。而100%遮擋的電池片,由于本身不工作,并且100%被覆蓋,電池溫度比組件中心的基準參考溫度要低。二極管導(dǎo)通后,二極管的溫度將隨電池遮擋面積的增加而升高。
當(dāng)兩種組件的測試電池都被100% 遮擋時,電池串內(nèi)100%電流都要從旁路二極管通過。二極管處于100% 負載加熱狀態(tài),所以溫度處于較高點。從實驗數(shù)據(jù)看,無熱斑組件和傳統(tǒng)組件中二極管的表面溫差并不大(95.8C/93.8C),推測是由于無熱斑組件的二極管是封裝在組件中,受到輻照帶來的額外溫升。
3. 雖然電池片熱斑溫度和硅片、電池片及組件制造工藝有很大關(guān)聯(lián)性,各組件廠的測試數(shù)據(jù)也不完全一致,但有以下的平均值:
組件種類 |
60片多晶 |
72片多晶 |
72片普通單晶 |
72片高效單晶 |
熱斑電池溫度 |
120°C |
130°C |
140°C |
>150 °C |
硅基材料 PN 結(jié)的結(jié)溫在正常工作條件下是150°C(不降流使用情況下)。而光伏電池片本身就是 PN 結(jié),當(dāng)溫度超過結(jié)溫時,會導(dǎo)致電池片效率降低,同時加速組件其它材料的老化和損壞。因此太陽能電池PN 結(jié)結(jié)溫不應(yīng)該高于150°C 才能保證其PN結(jié)和組件長期可靠的使用。
雖然 IEC 和 UL 組件相關(guān)標(biāo)準中并沒有規(guī)定熱斑電池溫度的絕對值,但限于硅基電池 PN 結(jié)的溫度特性,加上目前組件背板相對溫度指數(shù)(RTI)只有105°C ~110°C的實際狀況,特別是隨著電池片效率的提高,電池片的熱斑溫度將進一步大幅度提高,72片 PERC 單晶組件的熱斑溫度可能超過160°C。這不但對發(fā)電效率有影響,對低 RTI 背板,甚至組件的長期可靠性都將是一個巨大威脅(組件質(zhì)保使用溫度上限為+85度)。
結(jié)論:
1. 無熱斑組件測試電池片遮擋面積從0% 增加到100% 遮擋過程中,不論旁路二極管是否導(dǎo)通,被遮擋電池片的絕對溫度和組件中心參考溫度基本保持一致 (在2°C 范圍內(nèi))。無熱斑組件在發(fā)生熱斑時,被遮擋電池片的熱斑溫度主要將由此時組件工作溫度決定。
2. 傳統(tǒng)組件測試電池片遮擋面積從0% 增加到100% 遮擋過程中,被遮擋電池片的絕對溫度從80.7°C 升高到124.6°C;熱斑較高溫度和組件中心參考溫度差30°C 以上。如果組件工作溫度降低到50°C,傳統(tǒng)60片多晶組件在發(fā)生遮擋時,熱斑電池片和組件其他正常工作電池片溫度差有可能會達到70°C。
3. 建議將電池?zé)岚邷囟群细衽卸?biāo)準限定在150°C 以下。而且,熱斑電池溫度越低,可以判定組件在這方面的長期可靠性越好。